# 「力扣」第 529 题:扫雷问题(中等)
# 题目描述
让我们一起来玩扫雷游戏!
给你一个大小为 m x n
二维字符矩阵 board
,表示扫雷游戏的盘面,其中:
'M'
代表一个 未挖出的 地雷,'E'
代表一个 未挖出的 空方块,'B'
代表没有相邻(上,下,左,右,和所有 4 个对角线)地雷的 已挖出的 空白方块,- 数字(
'1'
到'8'
)表示有多少地雷与这块 已挖出的 方块相邻, 'X'
则表示一个 已挖出的 地雷。
给你一个整数数组 click
,其中 click = [clickr, clickc]
表示在所有 未挖出的 方块('M'
或者 'E'
)中的下一个点击位置(clickr
是行下标,clickc
是列下标)。
根据以下规则,返回相应位置被点击后对应的盘面:
- 如果一个地雷(
'M'
)被挖出,游戏就结束了- 把它改为'X'
。 - 如果一个 没有相邻地雷 的空方块(
'E'
)被挖出,修改它为('B'
),并且所有和其相邻的 未挖出 方块都应该被递归地揭露。 - 如果一个 至少与一个地雷相邻 的空方块(
'E'
)被挖出,修改它为数字('1'
到'8'
),表示相邻地雷的数量。 - 如果在此次点击中,若无更多方块可被揭露,则返回盘面。
示例 1:
输入:board = [["E","E","E","E","E"],["E","E","M","E","E"],["E","E","E","E","E"],["E","E","E","E","E"]], click = [3,0]
输出:[["B","1","E","1","B"],["B","1","M","1","B"],["B","1","1","1","B"],["B","B","B","B","B"]]
示例 2:
输入:board = [["B","1","E","1","B"],["B","1","M","1","B"],["B","1","1","1","B"],["B","B","B","B","B"]], click = [1,2]
输出:[["B","1","E","1","B"],["B","1","X","1","B"],["B","1","1","1","B"],["B","B","B","B","B"]]
提示:
m == board.length
n == board[i].length
1 <= m, n <= 50
board[i][j]
为'M'
、'E'
、'B'
或数字'1'
到'8'
中的一个click.length == 2
0 <= clickr < m
0 <= clickc < n
board[clickr][clickc]
为'M'
或'E'
# 方法一:深度优先遍历
参考代码 1:
public class Solution {
// M 地雷
// E 还未挖出的空方块
// B 已经挖出的空方块
/**
* 相邻关系规定为:8 个方向
*/
private int[][] directions = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}, {1, 1}, {-1, -1}, {1, -1}, {-1, 1}};
private int rows;
private int cols;
public char[][] updateBoard(char[][] board, int[] click) {
this.rows = board.length;
this.cols = board[0].length;
int x = click[0];
int y = click[1];
if (board[x][y] == 'M') {
// 规则 1
board[x][y] = 'X';
return board;
}
dfs(board, x, y);
return board;
}
public void dfs(char[][] board, int x, int y) {
// 相邻地雷的数量
int count = 0;
for (int[] direction : directions) {
int newX = x + direction[0];
int newY = y + direction[1];
if (inArea(newX, newY) && board[newX][newY] == 'M') {
count++;
}
}
if (count > 0) {
// 规则 3
board[x][y] = (char) (count + '0');
} else {
// 规则 2:如果当前位置没有地雷,将它修改为 B
board[x][y] = 'B';
for (int[] direction : directions) {
int newX = x + direction[0];
int newY = y + direction[1];
if (inArea(newX, newY) && board[newX][newY] == 'E') {
dfs(board, newX, newY);
}
}
}
}
private boolean inArea(int x, int y) {
return x >= 0 && x < rows && y >= 0 && y < cols;
}
}
# 方法二:广度优先遍历
参考代码 2:
import java.util.LinkedList;
import java.util.Queue;
public class Solution {
private int[][] directions = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}, {1, 1}, {-1, -1}, {1, -1}, {-1, 1}};
private int rows;
private int cols;
public char[][] updateBoard(char[][] board, int[] click) {
int x = click[0];
int y = click[1];
if (board[x][y] == 'M') {
board[x][y] = 'X';
return board;
}
this.rows = board.length;
this.cols = board[0].length;
boolean[][] visited = new boolean[rows][cols];
visited[x][y] = true;
Queue<int[]> queue = new LinkedList<>();
queue.offer(new int[] {x, y});
while (!queue.isEmpty()) {
int[] point = queue.poll();
int i = point[0];
int j = point[1];
int count = 0;
for (int[] direction:directions) {
int newX = i + direction[0];
int newY = j + direction[1];
if (inArea(newX,newY) &&board[newX][newY] == 'M') {
count++;
}
}
if (count > 0) {
board[i][j] = (char)(count + '0');
} else {
board[i][j] = 'B';
for (int[] direction:directions) {
int newX = i + direction[0];
int newY = j + direction[1];
if (inArea(newX,newY) && !visited[newX][newY] && board[newX][newY] == 'E') {
visited[newX][newY] = true;
queue.offer(new int[] {newX, newY});
}
}
}
}
return board;
}
private boolean inArea(int x, int y) {
return x >= 0 && x < rows && y >= 0 && y < cols;
}
}
作者:liweiwei1419 链接:https://suanfa8.com/backtracking/solutions-3/0529-minesweeper 来源:算法吧 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。