# 「力扣」第 690 题:员工的重要性(中等)
# 题目描述
给定一个保存员工信息的数据结构,它包含了员工 唯一的 id ,重要度 和 直系下属的 id 。
比如,员工 1 是员工 2 的领导,员工 2 是员工 3 的领导。他们相应的重要度为 15 , 10 , 5 。那么员工 1 的数据结构是 [1, 15, [2]] ,员工 2 的 数据结构是 [2, 10, [3]] ,员工 3 的数据结构是 [3, 5, []] 。注意虽然员工 3 也是员工 1 的一个下属,但是由于 并不是直系 下属,因此没有体现在员工 1 的数据结构中。
现在输入一个公司的所有员工信息,以及单个员工 id ,返回这个员工和他所有下属的重要度之和。
示例:
输入:[[1, 5, [2, 3]], [2, 3, []], [3, 3, []]], 1
输出:11
解释:
员工 1 自身的重要度是 5 ,他有两个直系下属 2 和 3 ,而且 2 和 3 的重要度均为 3 。因此员工 1 的总重要度是 5 + 3 + 3 = 11 。
Example 2:
Input: employees = [[1,2,[5]],[5,-3,[]]], id = 5
Output: -3
Explanation: Employee 5 has an importance value of -3 and has no direct subordinates.
Thus, the total importance value of employee 5 is -3.
Constraints:
1 <= employees.length <= 2000
1 <= employees[i].id <= 2000
- All
employees[i].id
are unique. -100 <= employees[i].importance <= 100
- One employee has at most one direct leader and may have several subordinates.
- The IDs in
employees[i].subordinates
are valid IDs.
提示:
- 一个员工最多有一个 直系 领导,但是可以有多个 直系 下属
- 员工数量不超过 2000 。
# 方法一:深度优先遍历
分为递归与非递归写法。
参考代码 1:使用递归写法。
Java 代码:
import java.util.ArrayList;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;
class Employee {
// It's the unique id of each node;
// unique id of this employee
public int id;
// the importance value of this employee
public int importance;
// the id of direct subordinates
public List<Integer> subordinates;
};
public class Solution {
private int res = 0;
private Set<Integer> visited;
private Map<Integer, Employee> map;
public int getImportance(List<Employee> employees, int id) {
int size = employees.size();
map = new HashMap<>(size);
visited = new HashSet<>(size);
for (Employee employee : employees) {
map.put(employee.id, employee);
}
dfs(map.get(id));
return this.res;
}
private void dfs(Employee employee) {
if (visited.contains(employee.id)) {
return;
}
visited.add(employee.id);
this.res += employee.importance;
// 遍历 id 的所有下属
for (Integer id : employee.subordinates) {
dfs(map.get(id));
}
}
}
Python 代码:
class Employee:
def __init__(self, id, importance, subordinates):
# It's the unique id of each node.
# unique id of this employee
self.id = id
# the importance value of this employee
self.importance = importance
# the id of direct subordinates
self.subordinates = subordinates
class Solution:
def __init__(self):
self.hash_map = dict()
self.visited = set()
self.res = 0
def getImportance(self, employees, id):
"""
:type employees: Employee
:type id: int
:rtype: int
"""
for employee in employees:
self.hash_map[employee.id] = employee
self.__dfs(self.hash_map[id])
return self.res
def __dfs(self, employee):
if employee.id in self.visited:
return
self.visited.add(employee.id)
self.res += employee.importance
for id in employee.subordinates:
self.__dfs(self.hash_map[id])
参考代码 2:使用栈的非递归写法。
Java 代码:
import java.util.ArrayList;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.Stack;
public class Solution {
public int getImportance(List<Employee> employees, int id) {
int size = employees.size();
Map<Integer, Employee> map = new HashMap<>(size);
Set<Integer> visited = new HashSet<>(size);
for (Employee employee : employees) {
map.put(employee.id, employee);
}
int res = 0;
Stack<Integer> stack = new Stack<>();
stack.add(id);
while (!stack.isEmpty()) {
Integer topId = stack.pop();
visited.add(topId);
res += map.get(topId).importance;
for (Integer subordinateId : map.get(topId).subordinates) {
// 如果没有访问过,才添加到 stack 中
if (visited.contains(subordinateId)) {
continue;
}
stack.push(subordinateId);
}
}
return res;
}
}
Python 代码:
class Employee:
def __init__(self, id, importance, subordinates):
# It's the unique id of each node.
# unique id of this employee
self.id = id
# the importance value of this employee
self.importance = importance
# the id of direct subordinates
self.subordinates = subordinates
class Solution:
def getImportance(self, employees, id):
"""
:type employees: Employee
:type id: int
:rtype: int
"""
hash_map = dict()
for employee in employees:
hash_map[employee.id] = employee
res = 0
visited = set()
stack = [id]
while stack:
top = stack.pop()
visited.add(top)
res += hash_map[top].importance
for subordinate_id in hash_map[top].subordinates:
# 如果没有访问过,才添加到栈中
if subordinate_id in visited:
continue
stack.append(subordinate_id)
return res
# 方法二:广度优先遍历
广度优先遍历,使用队列。
参考代码 3:
Java 代码:
import java.util.ArrayList;
import java.util.HashMap;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Queue;
public class Solution {
public int getImportance(List<Employee> employees, int id) {
int size = employees.size();
Map<Integer, Employee> map = new HashMap<>(size);
for (Employee employee : employees) {
map.put(employee.id, employee);
}
Queue<Integer> queue = new LinkedList<>();
int res = 0;
// 加入队尾
queue.offer(id);
while (!queue.isEmpty()) {
// 队头拿出
Integer currentId = queue.poll();
Employee currentEmployee = map.get(currentId);
res += currentEmployee.importance;
for (Integer eid : currentEmployee.subordinates) {
queue.offer(eid);
}
}
return res;
}
}
Python 代码:
class Employee:
def __init__(self, id, importance, subordinates):
# It's the unique id of each node.
# unique id of this employee
self.id = id
# the importance value of this employee
self.importance = importance
# the id of direct subordinates
self.subordinates = subordinates
from collections import deque
class Solution:
def getImportance(self, employees, id):
"""
:type employees: Employee
:type id: int
:rtype: int
"""
hash_map = dict()
for employee in employees:
hash_map[employee.id] = employee
res = 0
queue = deque()
queue.append(id)
while queue:
top = queue.popleft()
res += hash_map[top].importance
for subordinate_id in hash_map[top].subordinates:
queue.append(subordinate_id)
return res
作者:liweiwei1419 链接:https://suanfa8.com/breadth-first-search/solutions-2/0690-employee-importance 来源:算法吧 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。