# 「力扣」第 126 题:单词接龙 II(困难)

# 题目描述

给定两个单词( beginWordendWord)和一个字典 wordList,找出所有从 beginWordendWord 的最短转换序列。转换需遵循如下规则:

  1. 每次转换只能改变一个字母。
  2. 转换过程中的中间单词必须是字典中的单词。

说明:

  • 如果不存在这样的转换序列,返回一个空列表。
  • 所有单词具有相同的长度。
  • 所有单词只由小写字母组成。
  • 字典中不存在重复的单词。
  • 你可以假设 beginWordendWord 是非空的,且二者不相同。

示例 1:

输入:
beginWord = "hit",
endWord = "cog",
wordList = ["hot","dot","dog","lot","log","cog"]

输出:
[
  ["hit","hot","dot","dog","cog"],
  ["hit","hot","lot","log","cog"]
]

示例 2:

输入:
beginWord = "hit"
endWord = "cog"
wordList = ["hot","dot","dog","lot","log"]

输出: []

解释: endWord "cog" 不在字典中,所以不存在符合要求的转换序列。

# 思路分析

这道题是一道常见的考题,没有特别难理解的技巧,完全可以由已有的知识迁移过来。主要考察的是编码和耐心调试的能力。以下代码量较多,仅供参考,建议读者理解清楚解题思想以后,自行编码、调试完成。

  • 单词列表、起点、终点构成无向图,容易想到使用广度优先遍历找到最短路径:图中广度优先遍历要使用到;
    • 队列;
    • 标记是否访问过的「布尔数组」或者「哈希表」visited,这里 key 是字符串,故使用哈希表;

说明:本题可以在 wordList (添加到哈希表以后)上做减法,不过标准的、更可靠的做法是,另外使用一个 visited 哈希表,将访问以后的单词添加到 visited 哈希表中,下面给出的参考代码都采用这种不节约空间的做法。

  • 重点:由于要记录所有的路径,广度优先遍历「当前层」到「下一层」的所有路径都得记录下来。因此找到下一层的结点 wordA 以后,不能马上添加到 visited 哈希表里,还需要检查当前队列中未出队的单词是否还能与 wordA 建立联系
  • 广度优先遍历位于同一层的单词,即使有联系,也是不可以被记录下来的,这是因为同一层的连接肯定不是起点到终点的最短路径的边
  • 使用 BFS 的同时记录遍历的路径,形式:哈希表。哈希表的 key 记录了「顶点字符串」,哈希表的值 value 记录了 key 对应的字符串在广度优先遍历的过程中得到的所有后继结点列表 successors
  • 最后根据 successors,使用回溯算法(全程使用一份路径变量搜索所有可能结果的深度优先遍历算法)得到所有的最短路径。

# 方法一:广度优先遍历

  • 如果开始就构建图,结果可能会超时,这里采用的方法是:先把 wordList 存入哈希表,然后是一边遍历,一边找邻居,进而构建图,这是解决这个问题的特点;

  • 每一层使用一个新的 nextLevelVisited 哈希表,记录当前层的下一层可以访问到哪些结点。直到上一层队列里的值都出队以后, nextLevelVisited 哈希表才添加到总的 visited 哈希表,这样记录当前结点和广度优先遍历到的子结点列表才不会遗漏

为此,设计算法流程如下:

  • 第 1 步:使用广度优先遍历找到终点单词,并且记录下沿途经过的所有结点,以邻接表形式存储;
  • 第 2 步:通过邻接表,使用回溯算法得到所有从起点单词到终点单词的路径。

参考代码 1

Java 代码:

import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Deque;
import java.util.HashMap;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Queue;
import java.util.Set;


public class Solution {

    public List<List<String>> findLadders(String beginWord, String endWord, List<String> wordList) {
        // 先将 wordList 放到哈希表里,便于判断某个单词是否在 wordList 里
        Set<String> wordSet = new HashSet<>(wordList);
        List<List<String>> res = new ArrayList<>();
        if (wordSet.size() == 0 || !wordSet.contains(endWord)) {
            return res;
        }

        // 第 1 步:使用广度优先遍历得到后继结点列表 successors
        // key:字符串,value:广度优先遍历过程中 key 的后继结点列表
        Map<String, Set<String>> successors = new HashMap<>();
        boolean found = bfs(beginWord, endWord, wordSet, successors);
        if (!found) {
            return res;
        }

        // 第 2 步:基于后继结点列表 successors ,使用回溯算法得到所有最短路径列表
        Deque<String> path = new ArrayDeque<>();
        path.addLast(beginWord);
        dfs(beginWord, endWord, successors, path, res);
        return res;
    }

    private boolean bfs(String beginWord, String endWord, Set<String> wordSet,
                        Map<String, Set<String>> successors) {
        Queue<String> queue = new LinkedList<>();
        queue.offer(beginWord);

        // 记录访问过的单词
        Set<String> visited = new HashSet<>();
        visited.add(beginWord);

        boolean found = false;
        int wordLen = beginWord.length();
        // 当前层访问过的结点,当前层全部遍历完成以后,再添加到总的 visited 集合里
        Set<String> nextLevelVisited = new HashSet<>();
        while (!queue.isEmpty()) {
            int currentSize = queue.size();
            for (int i = 0; i < currentSize; i++) {
                String currentWord = queue.poll();
                char[] charArray = currentWord.toCharArray();
                for (int j = 0; j < wordLen; j++) {
                    char originChar = charArray[j];
                    for (char k = 'a'; k <= 'z'; k++) {
                        if (charArray[j] == k) {
                            continue;
                        }
                        charArray[j] = k;
                        String nextWord = new String(charArray);
                        if (wordSet.contains(nextWord)) {
                            if (!visited.contains(nextWord)) {
                                if (nextWord.equals(endWord)) {
                                    found = true;
                                }
                                nextLevelVisited.add(nextWord);
                                queue.offer(nextWord);

                                // 维护 successors 的定义
                                successors.computeIfAbsent(currentWord, a -> new HashSet<>());
                                successors.get(currentWord).add(nextWord);
                            }
                        }
                    }
                    charArray[j] = originChar;
                }
            }

            if (found) {
                break;
            }
            visited.addAll(nextLevelVisited);
            nextLevelVisited.clear();
        }
        return found;
    }

    private void dfs(String beginWord, String endWord,
                     Map<String, Set<String>> successors,
                     Deque<String> path, List<List<String>> res) {
        if (beginWord.equals(endWord)) {
            res.add(new ArrayList<>(path));
            return;
        }

        if (!successors.containsKey(beginWord)) {
            return;
        }

        Set<String> successorWords = successors.get(beginWord);
        for (String nextWord : successorWords) {
            path.addLast(nextWord);
            dfs(nextWord, endWord, successors, path, res);
            path.removeLast();
        }
    }

    public static void main(String[] args) {
        String[] words = {"rex", "ted", "tex", "tad", "tax"};
        List<String> wordList = new ArrayList<>();
        Collections.addAll(wordList, words);

        Solution solution = new Solution();
        String beginWord = "red";
        String endWord = "tax";
        List<List<String>> res = solution.findLadders(beginWord, endWord, wordList);
        System.out.println(res);
    }
}

Python 代码:

from collections import defaultdict
from typing import List
from collections import deque
import string


class Solution:
    def findLadders(self, beginWord: str, endWord: str, wordList: List[str]) -> List[List[str]]:
        # 先将 wordList 放到哈希表里,便于判断某个单词是否在 wordList 里
        word_set = set(wordList)
        res = []
        if len(word_set) == 0 or endWord not in word_set:
            return res

        successors = defaultdict(set)
        # 第 1 步:使用广度优先遍历得到后继结点列表 successors
        # key:字符串,value:广度优先遍历过程中 key 的后继结点列表
        found = self.__bfs(beginWord, endWord, word_set, successors)
        if not found:
            return res
        # 第 2 步:基于后继结点列表 successors ,使用回溯算法得到所有最短路径列表
        path = [beginWord]
        self.__dfs(beginWord, endWord, successors, path, res)
        return res

    def __bfs(self, beginWord, endWord, word_set, successors):
        queue = deque()
        queue.append(beginWord)

        visited = set()
        visited.add(beginWord)

        found = False
        word_len = len(beginWord)
        next_level_visited = set()

        while queue:
            current_size = len(queue)
            for i in range(current_size):
                current_word = queue.popleft()
                word_list = list(current_word)

                for j in range(word_len):
                    origin_char = word_list[j]

                    for k in string.ascii_lowercase:
                        word_list[j] = k
                        next_word = ''.join(word_list)

                        if next_word in word_set:
                            if next_word not in visited:
                                if next_word == endWord:
                                    found = True
                                next_level_visited.add(next_word)
                                queue.append(next_word)

                                successors[current_word].add(next_word)
                    word_list[j] = origin_char
            if found:
                break
            # 取两集合全部的元素(并集,等价于将 next_level_visited 里的所有元素添加到 visited 里)
            visited |= next_level_visited
            next_level_visited.clear()
        return found

    def __dfs(self, beginWord, endWord, successors, path, res):
        if beginWord == endWord:
            res.append(path[:])
            return

        if beginWord not in successors:
            return

        successor_words = successors[beginWord]
        for next_word in successor_words:
            path.append(next_word)
            self.__dfs(next_word, endWord, successors, path, res)
            path.pop()


if __name__ == '__main__':
    beginWord = "hit"
    endWord = "cog"
    wordList = ["hot", "dot", "dog", "lot", "log", "cog"]

    solution = Solution()
    res = solution.findLadders(beginWord, endWord, wordList)
    print(res)

复杂度分析:(如有错误还请朋友们请指正)

  • 时间复杂度:
    • 广度优先遍历:最差情况下每个结点遍历一次,时间复杂度为 ,这里 是单词列表的单词总数;
    • 建图:一开始将所有单词放进哈希表 ,每一个单词查找邻居 wordLen 表示单词的长度,一般而言不会很大,比起 会小很多,甚至可以视为常数;
    • 回溯算法:指数级别 ,记录每一个结果 ,这里认为最坏情况下,最短路径为单词列表的单词总数。
  • 空间复杂度:,这里 ways 表示最短路径的方案数。

说明:

successors.computeIfAbsent(currentWord, a -> new HashSet<>());
successors.get(currentWord).add(nextWord);

以上代码从 Java 1.8 以后支持,等价的代码片段是:

// 维护 successors 的定义
if (successors.containsKey(currentWord)) {
    successors.get(currentWord).add(nextWord);
} else {
    Set<String> newSet = new HashSet<>();
    newSet.add(nextWord);
    successors.put(currentWord, newSet);
}

# 方法二:双向广度优先遍历

  • 由于我们这个问题知道目标值,因此可以让起点和终点「同时」做 BFS,直到它们又交集,两边一起扩散形成的路径也是最短路径;
  • 双向 BFS 有点像山洞挖隧道,两边一起挖,直到打通为止。双向 BFS 搜索到的集合更小,相当于做了一些剪枝操作,因此会更快一些。

编码说明:

  • 参考代码 2 与参考代码 1 仅仅把「广度优先遍历」方法的实现改成了「双向广度优先遍历」,回溯的代码是一样的;
  • beginVisitedendVisited 交替使用,实现类似队列(符合顺序性,先进先出)的效果;
  • 注意:不一定非要严格按照「一左一右」的顺序交替向中间扩散,每次都从较小的集合扩散,统计意义上搜索的范围更小
  • 理解下面设计 forward 变量的作用,虽然是双向扩散,但是记录「后继结点列表」的时候方向固定。

参考代码 2

Java 代码:

import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Deque;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;

public class Solution {

    public List<List<String>> findLadders(String beginWord, String endWord, List<String> wordList) {
        // 先将 wordList 放到哈希表里,便于判断某个单词是否在 wordList 里
        List<List<String>> res = new ArrayList<>();
        Set<String> wordSet = new HashSet<>(wordList);
        if (wordSet.size() == 0 || !wordSet.contains(endWord)) {
            return res;
        }
        // 第 1 步:使用双向广度优先遍历得到后继结点列表 successors
        // key:字符串,value:广度优先遍历过程中 key 的后继结点列表
        Map<String, Set<String>> successors = new HashMap<>();
        boolean found = bidirectionalBfs(beginWord, endWord, wordSet, successors);
        if (!found) {
            return res;
        }
        // 第 2 步:基于后继结点列表 successors ,使用回溯算法得到所有最短路径列表
        Deque<String> path = new ArrayDeque<>();
        path.addLast(beginWord);
        dfs(beginWord, endWord, successors, path, res);
        return res;
    }

    private boolean bidirectionalBfs(String beginWord,
                                     String endWord,
                                     Set<String> wordSet,
                                     Map<String, Set<String>> successors) {
        // 记录访问过的单词
        Set<String> visited = new HashSet<>();
        visited.add(beginWord);
        visited.add(endWord);

        Set<String> beginVisited = new HashSet<>();
        beginVisited.add(beginWord);
        Set<String> endVisited = new HashSet<>();
        endVisited.add(endWord);

        int wordLen = beginWord.length();
        boolean forward = true;
        boolean found = false;
        // 在保证了 beginVisited 总是较小(可以等于)大小的集合前提下,&& !endVisited.isEmpty() 可以省略
        while (!beginVisited.isEmpty() && !endVisited.isEmpty()) {
            // 一直保证 beginVisited 是相对较小的集合,方便后续编码
            if (beginVisited.size() > endVisited.size()) {
                Set<String> temp = beginVisited;
                beginVisited = endVisited;
                endVisited = temp;

                // 只要交换,就更改方向,以便维护 successors 的定义
                forward = !forward;
            }
            Set<String> nextLevelVisited = new HashSet<>();
            // 默认 beginVisited 是小集合,因此从 beginVisited 出发
            for (String currentWord : beginVisited) {
                char[] charArray = currentWord.toCharArray();
                for (int i = 0; i < wordLen; i++) {
                    char originChar = charArray[i];
                    for (char j = 'a'; j <= 'z'; j++) {
                        if (charArray[i] == j) {
                            continue;
                        }
                        charArray[i] = j;
                        String nextWord = new String(charArray);
                        if (wordSet.contains(nextWord)) {
                            if (endVisited.contains(nextWord)) {
                                found = true;
                                // 在另一侧找到单词以后,还需把这一层关系添加到「后继结点列表」
                                addToSuccessors(successors, forward, currentWord, nextWord);
                            }

                            if (!visited.contains(nextWord)) {
                                nextLevelVisited.add(nextWord);
                                addToSuccessors(successors, forward, currentWord, nextWord);
                            }
                        }
                    }
                    charArray[i] = originChar;
                }
            }
            beginVisited = nextLevelVisited;
            visited.addAll(nextLevelVisited);
            if (found) {
                break;
            }
        }
        return found;
    }

    private void dfs(String beginWord,
                     String endWord,
                     Map<String, Set<String>> successors,
                     Deque<String> path,
                     List<List<String>> res) {

        if (beginWord.equals(endWord)) {
            res.add(new ArrayList<>(path));
            return;
        }

        if (!successors.containsKey(beginWord)) {
            return;
        }

        Set<String> successorWords = successors.get(beginWord);
        for (String successor : successorWords) {
            path.addLast(successor);
            dfs(successor, endWord, successors, path, res);
            path.removeLast();
        }
    }

    private void addToSuccessors(Map<String, Set<String>> successors, boolean forward,
                                 String currentWord, String nextWord) {
        if (!forward) {
            String temp = currentWord;
            currentWord = nextWord;
            nextWord = temp;
        }

        // Java 1.8 以后支持
        successors.computeIfAbsent(currentWord, a -> new HashSet<>());
        successors.get(currentWord).add(nextWord);
    }


    public static void main(String[] args) {
        List<String> wordList = new ArrayList<>();
        wordList.add("hot");
        wordList.add("dot");
        wordList.add("dog");
        wordList.add("lot");
        wordList.add("log");
        wordList.add("cog");


        Solution solution = new Solution();
        String beginWord = "hit";
        String endWord = "cog";
        List<List<String>> res = solution.findLadders(beginWord, endWord, wordList);
        System.out.println(res);
    }
}

Python 代码:

from collections import defaultdict
from typing import List
from collections import deque
import string


class Solution:
    def findLadders(self, beginWord: str, endWord: str, wordList: List[str]) -> List[List[str]]:
        # 先将 wordList 放到哈希表里,便于判断某个单词是否在 wordList 里
        word_set = set(wordList)
        res = []
        if len(word_set) == 0 or endWord not in word_set:
            return res

        successors = defaultdict(set)
        # 第 1 步:使用广度优先遍历得到后继结点列表 successors
        # key:字符串,value:广度优先遍历过程中 key 的后继结点列表
        found = self.__bidirectional_bfs(beginWord, endWord, word_set, successors)
        if not found:
            return res
        # 第 2 步:基于后继结点列表 successors ,使用回溯算法得到所有最短路径列表
        path = [beginWord]
        self.__dfs(beginWord, endWord, successors, path, res)
        return res

    def __bidirectional_bfs(self, beginWord, endWord, word_set, successors):
        visited = set()
        visited.add(beginWord)
        visited.add(endWord)

        begin_visited = set()
        begin_visited.add(beginWord)

        end_visited = set()
        end_visited.add(endWord)

        found = False
        forward = True
        word_len = len(beginWord)
        while begin_visited:
            if len(begin_visited) > len(end_visited):
                begin_visited, end_visited = end_visited, begin_visited
                forward = not forward

            next_level_visited = set()
            for current_word in begin_visited:
                word_list = list(current_word)
                for j in range(word_len):
                    origin_char = word_list[j]
                    for k in string.ascii_lowercase:
                        word_list[j] = k
                        next_word = ''.join(word_list)
                        if next_word in word_set:
                            if next_word in end_visited:
                                found = True
                                # 在另一侧找到单词以后,还需把这一层关系添加到「后继结点列表」
                                self.__add_to_successors(successors, forward, current_word, next_word)
                            if next_word not in visited:
                                next_level_visited.add(next_word)
                                self.__add_to_successors(successors, forward, current_word, next_word)
                    word_list[j] = origin_char
            begin_visited = next_level_visited
            # 取两集合全部的元素(并集,等价于将 next_level_visited 里的所有元素添加到 visited 里)
            visited |= next_level_visited
            if found:
                break
        return found

    def __add_to_successors(self, successors, forward, current_word, next_word):
        if forward:
            successors[current_word].add(next_word)
        else:
            successors[next_word].add(current_word)

    def __dfs(self, beginWord, endWord, successors, path, res):
        if beginWord == endWord:
            res.append(path[:])
            return

        if beginWord not in successors:
            return

        successor_words = successors[beginWord]
        for next_word in successor_words:
            path.append(next_word)
            self.__dfs(next_word, endWord, successors, path, res)
            path.pop()


if __name__ == '__main__':
    beginWord = "hit"
    endWord = "cog"
    wordList = ["hot", "dot", "dog", "lot", "log", "cog"]

    solution = Solution()
    res = solution.findLadders(beginWord, endWord, wordList)
    print(res)

(本节完)


作者:liweiwei1419 链接:https://suanfa8.com/backtracking/solutions-5/0126-word-ladder-ii 来源:算法吧 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

Last Updated: 11/19/2024, 11:31:47 AM